水的介电常数_19摄氏度水的介电常数

骑士游戏 2024-05-21 09:50 1

关于水的物理与化学性质

水能够和有机物,无机盐发生水解反应:

水的物理性质 :

水的介电常数_19摄氏度水的介电常数水的介电常数_19摄氏度水的介电常数


① 热击穿。电极间介质在一定外加电压作用下,其中不大的电导最初引起较小的电流。电流的焦耳热使样品温度升高。但电介质的电导会随温度迅速变大而使电流及焦耳热增加。若样品及周围环境的散热条件不好,则上述过程循环往复,互相促进,使样品内部的温度不断升高而引起损坏。在电介质的薄弱处热击穿产生线状击穿沟道。击穿电压与温度有指数关系,与样品厚度成正比;但对于薄的样品,击穿电压比例于厚度的平方根。热击穿还与介质电导的非线性有关,当电场增加时电阻下降,热击穿一般出现于较高环境温度。在低温下出现的是另一种类型的电击穿。

(编者提示:人教版自然第4册第1课水)

纯水是无色、无臭、无味、透明的液体。水的凝固点是0℃,沸点是100℃。水在4℃时密度,为1克/厘米3。水结冰时密度减小,体积膨胀。

水的化学性质:

水和金属单质发生氧化还原反应

2H2O+2Na=2NaOH+H2,一般而言,水在常温下和活泼金属反应,生成碱和氢气

在高温下,能和较活泼的金属如⑦铁电性。在一些电介质晶体中存在许多自发极化的小区域,每个自发极化的小区域称为铁电畴,其线度为微米数量级。同一铁电畴内各个电偶极矩取向相同,不同铁电畴的自发极化方向一般不同,因而宏观上总的电偶极矩为零。在外电场作用下各铁电畴的极化方向趋于一致,极化强度 P与电场强度E有非线性关系 。在峰值固定的交变电场反复作用下,P与E的关系曲线类似于磁滞回线(见铁磁性),称为电滞回线。以上性质称为铁电性,具有铁电性的电介质称铁电体 。当温度升高到某一临界值Tc时,铁电畴互解,铁电性消失 ,铁电体转变为普通顺电性电介质,Tc称为铁电居里温度。铁电体具有很高的电容率。铁电体必定同时具有压电性和热电性。:Mg+2H2O=Mg(OH)2+H2(反应需要加热)反应

水能够和氧化物发生反应,生成碱或酸

SO3+H2O=H2SO4

Na2O+H2O=2NaOH

水能够辅助生成酸式盐:

CaCO3+H2O+CO2=Ca(HCO3)2

水能够和物,反应,生成氧气

2Na2O2+2H2O=4NaOH+O2

4KO2+2H2O=4KOH+3O2

C12H22O11+H2O=C12H24H12

一般情况下是可逆反应,但是由于水解吸热,所以加热能够促进水解,在加热条件下,上述反应能够进行完全,最终生成Fe2O3

2H2O=2H2+O2(在电解或光照情况下)

乙酸与水的极性那个大

而水的介电常数为78.5,乙酸的介电常数为6.15。水的介电常数比乙酸的介电常数大,所以水的极性大。

乙酸与水的极性相比,水的极性要比乙酸的大。

对于分子极性大小,尚无一个公认准确的量化标准,但比较常用的是根据物质的介电常数进行固体(晶体)中的电极化过程,实际上是点阵的集体运动。研究电极化的集体运动是固体元激发理论的一部分。极化子就是一种元激发(见固体中的元激发)。按固体元激发理论,固体的介电常数不仅是频率的函数,而且也是极化波矢 k的函数;后者称为空间色散。研究介电函数ε(ω,k)的规律与电极化元激发性质的关系又会使固态电介质物理发展到一个新阶段。判断,也就是介电常数越大,分子极性越大。

在化学中,极性指一共价键或一个共价分子中电荷分布的不均匀性。如果电荷分布得不均匀,则称该键或分子为极性;如果均匀,则称为非极性14.4.1.4技术要求。

常见的溶剂极性大小顺序(由小至大)

乙二醇、乙醇、乙酸、甘油(丙三醇)、乙腈、DMF、甲醇、、甲酸、DMSO、、甲酰胺、水、三氟甲磺酸、无水硫酸、无水、无水。

以上内容参考:

水流快的成语

水介绍水(化学式为H2O),是由氢、氧两种元素组成的无机物,无毒,可饮用。在常温常压下为无色无味的透明液体,被称为人类生命的源泉,是维持生命的重要物质,也叫氧化氢。:

水是地球上最常见的物质之一,地球表面约有71%被水覆盖。它是包括无机化合、人类在内所有生命生存的重要资源,也是生物体最重要的组成部分。它在空气中含量虽少,但却是空气的重要组成部分。

物理性质:

虽然水是许多物理常数的标准,但是它本身却具有一些特殊的物理性质。和绝大多数物质凝固时体积缩小、密度增大的情况不同,水结冰时体积变大,密度减小;和绝大多数物质的密度随着温度的降低而增大的情况不同,水的密度在277.14K时有一个值。

在所有固态和液态物质中,水的比热容;水的分子量虽然不大,但其沸点和蒸发热却相当高;同族同类型化合物的沸点及凝固点一般皆随分子量的增加而增高,而水与其同族分子量比它大的同类物的沸点及凝固点还要高。

在众多的物2F2+2H2O=4HF+O2质中,水的介电常数特别大,因此也是特别优良的极性溶剂。所有这些“反常”现象,都同水能形成氢键并发生缔合作用密切相关对于作为混合物的松散岩石,其介电常数满足下列实验公式:。

在没有空气存在和小于饱和蒸气压力的条件下于石英毛细管内冷凝水蒸气,可以得到比普通水更浓、更黏、较难挥发和热膨胀系数较高的所谓“反常水”或“多聚水”。

人体的介电常数是多少

水流快的成语又源远流在可见光区,只有电子云的畸变极化在起作电击穿的另一种机制是1934年C.曾讷提出来的内部冷发射模型。认为强外电场使能带发生倾斜。因而价带上的电子出现隧道效应。当场强为106V/cm数量级时,电子可通过隧道效应移动几百个原子的距离。在约10-12秒时间内导带就可以出现足够数量的电子而引起击穿。用了,这时实部取更小的值,称为光频介电常数,记以ε→∞,虚部对应于光吸收。光频介电常数ε→∞实际上随频率的增加而略有增加,这是正常色散。在某些频率时,实部ε′(ω)先突然增加随即陡然下降,与此同时虚部ε〃(ω)出现峰值,这对应于电子跃迁的共振吸收。对于电介质,麦克斯韦方程组指出,光的折射率n的二次方等于介电常数即光频介电常数ε→∞(n2=ε→∞)。拿水来说,因为水分子具有很大的固有电矩,水的静电介电常数为81。但是,它的折射率为1.33,亦即水的光频介电常数ε→∞约为1.77,比81小得多;这是因为在极高频的光电场作用下,只有电子过程才起作用的缘故。长,川流不息,汹涌澎湃,开源节流,惊涛骇浪,波涛汹涌,水到渠成,泾渭分明,逆水行舟等。

岩石的介电常数的经验公式

式中:n为经验常数,要通过实验确定。

岩石可以电离有导电性 溶液能导电是因为溶液中有自由移动的离子酸碱盐的水溶液都能导电中地层水的矿化度对地层水的介电常数的影响由下列经验公式给出:

岩石物理学基础

ε=Vwεwa+(φ-Vw)εa+(1-φ)εm,Vw≤Vt(5-6-2)

其中:εwa=εi+γ(εw-εi)Vw/Vt,

ε=Vtεwa+(V14.4.2介电测井w-Vt)εw+(φ-Vw)εa+(1-φ)εm,Vw> Vt(5-6-3)

其中,εwa=εi+γ(εw-εi)。

式中:ε为松散岩石的介电常数;εa为空气的介电常数;εm为骨架的介电常数;εi为冰的介电常数;εw为自由水的介电常数;εwa为束缚水的介电常数;φ为岩石的孔隙度;γ为实现与实验数据拟合所引入的优化参数;Vw为自由水的体积分数;Vt为束缚水的体积分数。

地层水的介电常数对岩石的介电常数影响很大,而这种影响又与频率密切相关。令w代表含水量,则

εr=εr(w=0)wn (5-6-4)

另外,根据电路的串并联理论,有下列介电常数的算术平均公式

岩石物理学基础 岩石物理学基础

此外,还有下列对数和指数平均公式

岩石物理学基础 岩石物理学基础

在上列4个公式中,εi和Vi分别代表第i种成分的介电常数和体积分数。

什么是介电常数?

水还能够分解

介电常数又叫介质常数,介电系数或电容率,它是表示绝缘能力特性的一个系数,以字母ε表示,单位为法/米(F/m)

②电致伸缩。是压电效应的逆效应。一些晶体在电场作用下会发生伸长或缩短形变,称电致伸缩。利用电致伸缩效应可将电振动转变为机械振动,常用于产生的换能器,以及耳机和高音喇叭等。

定义为电位移D和电场强度E之比,ε=D/Ε。电位移D的单位是库/二次方米(C/m^2)。

某种电介质的介电常数ε与真空介电常数ε0之比称为该电介质的相对介电常数εr ,εr=ε/ε0是介电测井是利用所测出的相位的变化来反映地层的含水量的变化。因此,对于含水层,其含水量(即孔隙度与含水饱和度的乘积)增加,介电测井所测得的相位也随之增加。无量纲的纯数,εr与电极化率χe的关系为εr=1+χe。

真空的介电常数ε0=1/3.6π(pF/cm),相对介电常数εr=ε/ε0,ε是某介质的介电常数。

下面是几种物质的相对介电常数

液态:水:80; 丙三醇:47; 甲醇:37; 乙二醇:35-40; 乙醇:20-25; 笨:2.3; 松节油:3.2; 液氮:2; 液态二氧化碳:1.59; 液态空气:1.5

固体:白云石:8; 盐:6; 醋酸纤维素:3.7-7.5; 瓷器:5-7; 纤维素:3.9; 米及谷类:3-5; 砂:3-5;砂糖:3; 玻璃:3.7; :3.4; 沥青:2.7; 聚塑料:1.8-2.2; 纸:2; 云母:6-8

气态:空气及其他气体:1-1.2

介电常数对象分别是空气和水,而水的常数值大于空气,如何理解?

由图可见,石英砂岩等εr的变反转恢复法用于测量纵向弛豫时间T1,测量原理见图14-7。初始磁化矢量B0沿静磁场方向(图14-7a)施加一个与M0完全反向的180°脉冲使B0反转(图14-7b),经过τ延迟,z方向的纵向磁化矢量受纵向弛豫作用逐步恢复(图14-7c),更施加以90°脉冲将z方向剩余的纵向磁化矢量反转到x轴(或y轴),进行检测。测出FID(图14-7d)。经过一段延迟PD,使磁化矢量完全恢复正常,再开始下一个测量。化与湿度有直接关系(在半对数坐标中)。此外,当湿度(ω)从0.01%增大到0.1%时,εr大约从6增加到12(增加一倍),变化不超过一个级次。

介电常数基本的原理是电介质所产生的一个电场的大小。

介质在外加电场时会产生感应电荷而削弱电场,原外加电场(真空中)与最终介质中电场比值即为介电常数(permeablity)。

对于空气,由于大部分是不带电的非极性分子,因此在电场下产生的极化小,因而电场强度小。而对于水,它本身就是一个极性分子,因此产生的电场强度大,所以其常数值要大于空气的。

介电常数与击穿场强

例如,对于固体电介质被击穿,分为三种形式:电击穿、热击穿和电化学击穿。虽然都是电击穿,但其作用机理是不同的。

介电常数:

⑧铁弹性。一些晶体在其内部能形成自发应变的小区域,称为铁弹畴 ,同一铁弹畴内的自发应变方向( 畴态 )相同,任两个铁弹畴的畴态相同或呈镜面对称。外加应力可使铁弹畴从一个畴态过渡到另一畴态。外应力改变时 ,应变滞后于应力变化,且应力与应变是非线性关系。在周期性外应力作用下,应变与应力的关系曲线类似于磁滞回线,称为力滞回线。以上性质称为铁弹性,具有铁弹性的电介质称为铁弹体。铁弹体的电容率 、折射率 、电导率 、热胀系数、导热系数、弹性模量和电致伸缩率等因方向而异,且这种方向性会随应力而变,利用这些特点在制造力敏器件上有着广泛的应用前景。

学术上被称为“介电强度”。是指:单位厚度的绝缘材料在击穿之前能够承受的电压,即电场强度值,单位是kV/mm。

击穿场强:

两者之间没有直接的关系。

电介质被击穿,分为:固体电介质被击穿、液体电介质被击穿、气体电介质被击穿。

具体到每种电介质被击穿,影响因素比较复杂。

空气的介电常数约为1,水的介电常数约为80,显然水的导电能力大于空气,所以那说法不对

比较水和水蒸气的相同点与不同点

纯水导电性十分微弱,属于极弱的电解质。日常生活中的水由于溶解了其他电解质而有较多的阴阳离子,才有较为明显的导电性。2022年9月,科学家发现嫦娥五号矿物表层中存在大量的太阳风成因水。

比较水和水蒸气的相同点与不同点如下:

相同点:水和水蒸气两者可以相互转换成分,都是水分子,而且两者化学性质相同,水蒸气其实是水的气体形式,当水达到沸点时,水就变成水蒸气。

不同点:三者物理性质不同,水蒸气是气体,水是液体,当水在沸点以下时,水也可以缓慢地蒸发成水蒸气,而在极低压环境下,冰也会直接升华变水蒸气。水蒸气可能会造成温室效应,是一种温室气体。

水是地球上最常见的物质之一,地球表面约有71%被水覆盖。它是包括无机化合、人类在内所有生命生存的重Cl2+H2O=HCl+HClO要资源,也是生物体最重要的组成部分。它在空气中含量虽少,但却是空气的重要组成部分。

水物理性质:

虽然水是许多物理常数的标准,但是它本身却具有一些特殊的物理性质。和绝大多数物质凝固时体积缩小、密度增大的情况不同,水结冰时体积变大,密度减小;和绝大多数物质的密度随着温度的降低而增大的情况不同,水的密度在277.14K时有一个值。

在所有固态和液态物质中,水的比热。水的分子量虽然不大,但其沸点和蒸发热却相当高;同族同类型化合物的沸点及凝固点一般皆随分子量的增加而增高,而水与其同族分子量比它大的同类物的沸点及凝固点还要高。

在众多的式中:εrd为纯水的相对介电常数(εrd≈81);C为以mol/L表示的浓度(或mol/cm3)。物质中,水的介电常数特别大,因此也是特别优良的极性溶剂。所有这些“反常”现象,都同水能形成氢键并发生缔合作用密切相关。

 参数测井

在研究碱族卤晶体的电击穿时,还提出了等离子体“电磁箍缩模型”。

地质灾害勘查中涉及的地理物理参数很多,包括电性参数、放射性参数、弹性参数、热学参数等,均与岩石的物理性质、状态有关。相应的参数测井方法包括电阻率测井、放射性测井、声波测井、井温测井及新发展的核磁共振测井、介电常数测井。前四种方法在前面章节中介绍,本节仅介绍可连接获取地层流体特征参数的核磁共振测井、介电常数测井两部分内容。

这种反常水的结构甚至是组成都是未确定的。至于其反常性质,经研究几乎可以确信,是由于杂质存在引起的,而纯的“反常”水并不存在。

14.4.1核磁测井

14.4.1.1基本原理

核磁测井(Nuclear magneti logging或Nuclear magnetic resonance logging)仪由流过强大电流的直流电线圈组成,由此产生磁场,使得质子按一定方向排列,当磁场消失后,质子也获得自由。通常像陀螺一样旋转的质子,开始从人工磁场的控制中解脱出来,回到原来为大地磁场所控制的排列方式中去,这一过程导致质子的旋进,通过测量质子旋进信号的强度、弛豫时间等参数进而求得孔隙度、饱和度、渗透率等有关地层参数。

14.4.1.2观测方法

在核磁测井中测量核磁弛豫的方法主要有自由衰减度、自旋回波、反转恢复法等。

自由衰减度是利用某种方法使与静磁场Bo平行的核磁化强度M0反转90°,以激发自由进动信号。例如:射频脉冲法使用一个90°射频脉冲,使原来的静磁场方向的磁化矢量反转90°,然后进行观测,得到的信号即是自由感应信号或称FID信号。另外还有一种方法即预极化法。在稳定磁场Bo的垂直方向上加以较强的预极化强度 Bp,由于极化磁场很强,最初沿稳定磁场建立起来的平衡态静磁化强度 M0会发生偏转而转向沿总磁场的方向,在极化场的作用下,以纵向弛豫时间T1确定的速率产生新的磁化强度Mp。在垂直于B0方向上探测,在接收线圈中可以观测到一个频率的自由感应信号即FID信号,并按(14.2)式变化。

自旋回波法是首先发射一个90°脉冲,接着再发射一个或一串180°脉冲,由此构成一次测量序列。在一个测量序列中,开始质子线性排列,其后依次为自旋扳倒、进动,重复以失相及重聚。

图14-7反转恢复法测量原理

14.4.1.3资料解释

核磁测井测量的主要是地层孔隙介质中氢核对仪器读数的贡献,它不受岩延迟性的影响,在解释孔隙度、渗透率等储层参数时,具有其他测井方法无法比拟的优势。

通过选择一个合适的截止值 TR,可以区分开反映小孔隙或为孔隙水的快速弛豫组分与反映可动孔隙中的慢速弛豫组分,使得大于 TR的组分下面包围的面积与可产出的水相当。因此自由流体指数可以表示为:

毛细管束缚孔隙度φb可以通过上面求得的φNMR和FFI相减求得,或者直接对 T2分布小于 TR的组分进行积分得到:

因此可以看出,核磁测井可以很容易地求出不受骨架岩性影响的有效孔隙度φe,可动流体孔隙度φf、毛细管束缚水孔隙度φb等。

(2)渗透率的解释

目前由NMR参数或由NMR参数与其他参数结合建立的求取渗透率的关系式多达几十种,但归纳起来可分为三类:

由 T2和φNMR(φe)建立渗透率模型(斯仑贝谢):

式中:T2log为 T2对数平均值,对砂岩地层通常取αl=4,a2=2。

由NMR测得的束缚水和可动流体参数组合φNMR、φFFI(φf)、φBVI(φb)、渗透率K建立的关系式(Coatas模型):

对于砂岩地层,通常取b1=4,b2=2。

由NMR得视扩展系数D所求得的S/V组合F与渗透率K建立关系式:

其中:C为经验系数,受岩石表面弛豫能力的影响。对应不同地区,不同层段,C值不一样,需做岩心实验分析确定;F为泥浆滤液影响系数;S为孔隙表面积;V为孔隙体积。

(1)要使产生的磁化场足够大,电流要求很大。

(地质灾害勘查地球物理技术手册2)要求有较长的极化时,测井时速度要非常慢。

(3)为了消除井液影响,有时需往泥浆中掺杂顺磁物质。

14.4.1.5展望

核磁测井经过50年的发展,可以提供十分丰富的地层信息,能够定量确定有效孔隙度、自由流体孔隙度、束缚水孔隙度、孔径分布以及渗透率等参数。随着现代电子技术和计算机技术的飞速发展,其测量仪器和数据处理功能日益完善,核磁测井的应用范围也不断扩大。在地质灾害勘查方面可涉及许多灾种,如滑坡、崩塌等,核磁测井可以研究滑坡、崩塌区内的地层水分布情况,定量地给出有关参数,为地质灾害勘查和施工设计提供有关数据。可以预料,随着核磁测井技术的不断发展,其在地质灾害勘查工作中必将受到越来越广泛的重视。

介电测井(Dielectric logging或Dielectric constant logging)是研究高频电磁场中岩石电学性质的一种测井方法。通过测量电磁波在穿过岩层后其相位的变化,来确定所探测岩石的介电常数,进而可确定地层的含水量。

14.4.2.1基本原理

介电常数是表征介质极化能力的一个物理量。绝大多数矿物的介电常数是4~7,而水的介电常数约为80,具有明显的异。因此,利用介电常数可以区分含水层与矿物。理论研究指出,高频电磁波在介质中传播时,其幅度和相位均与电磁波的频率、介质的介电常数和电导率有关。当采用较低频率时,电磁波幅度和相位的变化主要反映岩石电导率的变化,而很少反映岩石介电常数的变化。反之,采用较高频率时,电磁波的相位主要反映的是岩石介电常数的变化,而与电导率关系不大。电磁波的幅度则综合反映了介电常数及电导率的变化。因此采用较高频率(如60MHz)测量高频电磁波的相位,更有利于测定介质的介电常数。

14.4.2.2观测方法

测井时,在井轴上放置三个线圈,组成一线圈系,其中一个为发射线圈,其余二个为接收线圈。当发射线圈供以高频交流电时,就会向地层辐射高频电磁波,穿过一段地层之后先后到达两个接收线圈,记录下高频电磁波经过一段距离(即两个接收线圈之间的距离)之后的相位。对于不同性质的地层,其相位的数值是不相同的,因此可根据所测地层相位的大小及其变化规律,来分析地层。在高频条件下相位的变化受地层电阻率的影响很小。

14.4.2.3资料解释原则

14.4.2.4展望

介电测井能够准确区分含水层和非含水层,能反映地层的含水量变化。在地质灾害勘查工作中,可以解决滑坡体内地层水的含水量变化,对滑坡体的预测具有重要的作用。随着介电测井技术及设备的进一步发展,在地质灾害勘查工作中的应用领域将不断扩大,将会发挥出越来越重要的作用。

电介质的主要参数有哪些?要详细

人体中的大部分物质都是水(水的介电常数为80),介电常数很高,还包含了离子物质,这些物质使人体成为很好的电导体。 频率100KHz时,肌肉的介电常数是66.2,脂肪的介电常数是12.7; 频率400KHz时,肌肉的介电常数是58.0,脂肪的介电常数是11.6; 频率900KHz时,肌肉的介电常数是56.0,脂肪的介电常数是11.3。

不导电的物质,如空气、玻璃、云母片、胶木等。

电介质包括气态、液态和固态等范围广泛的物质。固态电介质包括晶态电介质和非晶态电介质两大类,后者包括玻璃、树脂和高分子聚合物等,是良好的绝缘材料。凡在外电场作用下产生宏观上不等于零的电偶极矩,因而形成宏观束缚电荷的现象称为电极化,能产生电极化现象的物质统称为电介质。电介质的电阻率一般都很高,被称为绝缘体。有些电介质的电阻率并不很高,不能称为绝缘体,但由于能发生极化过程,也归入电介质。通常情形下电介质中的正、负电荷互相抵消,宏观上不表现出电性,但在外电场作用下可产生如下3种类型的变化:①原子核外的电子云分布 产生畸变,从而产生不等于零的电偶极矩,称为畸变极化;②原来正、负电中心重合的分子,在外电场作用下正、负电中心彼此分离,称为位移极化;③具有固有电偶极矩的分子原来的取向是混乱的,宏观上电偶极矩总和等于零,在外电场作用下,各个电偶极子趋向于一致的排列,从而宏观电偶极矩不等于零,称为转向极化。

电介质的特征是以正、负电荷重心不重合的电极化方式传递或记录(存储)电的作用和影响;在其中起主要作用的是束缚电荷。电介质物理主要是研究介质内部束缚电荷在电或和光的作用下的电极化过程,阐明其电极化规律与介质结构的关系,揭示介质宏观介电性质的微观机制,进而发展电介质的效用。电介质物理也研究电介质绝缘材料的电击穿过程及其原理,以利于发展电绝缘材料。

实际上金属也具有介电性质;但金属的介电性是来源于电子气在运动过程中感生出虚空穴(正电荷)所引起的动态屏蔽效应。因其基本上不涉及束缚电荷,故不把金属的介电性列入电介质物理研究的范畴。电介质有气体的、液体的和固体的,分布极广。

基本概念 电极化过程 电极化的基本过程有三:①原子核外电子云的畸变极化;②分子中正、负离子的(相对)位移极化;③分子固有电矩的转向极化。在外界电场作用下,介质的介电常数 ε是综合地反映这三种微观过程的宏观物理量;它是频率 ω的函数ε(ω)。只当频率为零或频率很低(例如1千赫)时,三种微(1)孔隙度的解释观过程都参与作用,这时的介电常数ε(0)对于一定的电介质而言是个常数,通称为介电常数,这也就是静电介电常数εs或低频介电常数。随着频率的增加,分子固有电矩的转向极化逐渐落后于外场的变化,这时,介电常数取复数形式ε(ω)=ε′(ω)-jε〃(ω),其中虚部ε〃(ω)代表介质损耗;它是由于电极化过程追随不上外场的变化而引起的。实部随着频率的增加而显著下降,虚部出现峰值,如图1所示。频率再增加,实部ε′(ω)降至新值,虚部ε〃(ω)变为零,这表示分子固有电矩的转向极化已不能响应了。当频率进入到区,分子中正、负离子电矩的振动频率与外场发生共振时,实部ε′(ω)先突然增加,随即陡然下降,ε〃(ω)又出现峰值;过此以后,正、负离子的位移极化亦不起作用了。

对于结构紧密的固态介质,除接近熔点时的情况外,分子电矩的直接转向过程是不存在的。但固态介质中总是有缺陷的,在外电场作用下,带电缺陷从一个平衡位置跳跃到另一个平衡位置,其效果就相当于电矩的转向。一些具有强离子性(键)的固体,它们的静电介电常数εs总比n2的数值大得多,除离子位移极化的贡献外,值就是带电缺陷在外电场作用下的跳跃所引起的。只有共价键的原子晶体,如金刚石、锗、硅等,它们的静电介电常数εs的数值才与n2的数值很接近。但是,对于Ⅲ-Ⅴ族化合物,如GaAs、InP等,它们虽然主要是共价(键)结构,但因附加了离子键,其静电介电常数εs也比折射率二次方值n2大得多。

因此,研究介电常数随频率的变化即研究介电常数的频散(色散)关系、研究介质损耗、介质吸收以及介质弛豫,对于分析分子和固体的结构、化学键的性质以及分子的转动、离子的振动等显然是十分重要的。这些研究既是电介质物理的重要内容,也是分子物理、固体物理的重要内容。微波波谱学、光谱学以及激光光谱学与电介质物理有着互相交叠的领域,这些研究从不同的角度发展,相辅相成,相得益彰,在物理学和化学上占据着重要的地位。这些工作对于高分子材料、玻璃陶瓷材料以及非晶态材料的发展,是非常重要的。

有效场 在电介质物理的发展过程中,有效场或内(电)场问题,始终是个困难的理论问题,曾引起过许多学者的讨论,但一直没有得到的解决。问题是这样提出的,在外电场的作用下,电介质内部发生电极化,整个介质出现宏观电场,但作用在每个分子、原子上使之发生极化的有效场(内场)显然不包括该分子、原子自身极化所产生的电场,因而有效场不等于宏观场。考虑有效场时,必须把所讨论的分子(或原子)排除。对于所讨论的分子(原子)来说,近邻的和远离的其他分子所发生的作用并不相同;远离的只有长程作用,近邻的还有短程作用。在讨论这问题时,H.A.洛伦兹设想以所考虑的分子(原子)为球心,作一球,半径足够大,球外可作为连续介质处理,对球内则必须具体考虑结构。当介质具有对称中心时,洛伦兹得出结论,球内其他分子对中心分子的作用互相抵消,球外则可归结为空球表面的极化在中心所产生的场,即4πP/3(CGS制),其中P 代表介质的极化强度。这叫做洛伦兹有效场或内场,其中E 代表外加电场。实践表明,对于不具固有电矩并有对称中心的介质,洛伦兹有效场是适用的。对于分子具固有电矩的极性介质,洛伦兹场的表示则完全失效。L.昂萨格曾作了讨论,但他的结果只能应用于极性不太强的液体。一般情形下,计算很繁复,问题没有得到的解决。

学科内容 固态电介质分布很广而因具有许多可供利用的性质如电致伸缩、压电性、热电性和铁电性等,引起了广泛的研究,但过去多限于讨论它们的宏观性质。实际上,这些性质是与固体(晶体)内在结构、内部原子(离子)以及电子(主要指束缚电子)的运动密切相关的。现在,固态电介质物理与固体物理、晶体学和光学有着许多交叠的领域;特别是激光出现以后,研究电介质与激光的相互作用,又构成为固态激光光谱学、固态非线性光学和固态光学(固体光学性质)的重要内容。

离子晶体中点阵振动的光频波导致点阵的电极化;这类光频波和离子的位移极化所引起的介电性质和对光的吸收与喇曼散射以及一些特殊的光学性质,长期以来就是固体物理的研究对象;也属电介质物理和光学的研究范畴。碱卤晶体中的F 心以及与之相关的各种色心,人们从30年代起,就不断地进行研究,推动了固体物理的发展,对于固体发光、固体激光的发展也起着促进作用。近年来,研究色心激光并发展可调的色心激光器是很受重视的课题。为了研究F心,当初所提出关于离子晶体中电子自陷的极化子模型即运动电子和它周围畸变势的总体,现在已成为探讨离子性介电晶体和带有离子性(键)的半导体包括Ⅲ-Ⅴ族、Ⅱ-Ⅵ族半导体中电子过程的研究对象。这些也是电介质物理研究的范畴。

当前固态电介质物理的研究重点,还在于研究无机电介质材料的机电、电光和铁电等性质。

电致伸缩 固体中的电极化会引起内应力,从而引起固体的形变;即电致形变。对于一般固体,内应力与外电场强度的二次方成正比,这种电致形变是二阶效应,通称为电致伸缩。除钛酸钡、 锆钛酸铅(PZT)及其复合物等少数晶态材料外,一般电致伸缩效应是很小的。但在巨脉冲的强激光作用下,激光的强电场通过电致伸缩效应,在固体介质中构成甚强的超声行波场,从而引起受激布里渊散射,十分使人注目。利用受激布里渊散射,有可能制成连续可调的激光器。

压电性 没有中心反演对称的一些带有离子性(键)的晶体,在电场作用下,内应力与外电场强度成正比,具有一阶的电致形变效应,这个效应显著。这些非中心对称的晶体称为压电晶体;它们在外界压力的作用下,通过内部的电极化过程,使晶体表面出现面电荷,这称为压电效应。压电晶体种类很多,最常见而用得广的有石英、罗谢耳盐、KDP、ADP、LiNbO3、LiTaO3等等。一些具闪锌矿结构的晶体,如GaAs、CuCl、ZnS、lnP等,它们是压电半导体。还有压电陶瓷如 PZT。石英晶体作为电频的振荡器,就利用了它的逆压电效应,特别是它的热胀系数很小,具有(机械)稳频作用,在电信上、电子技术上应用很广。罗谢耳盐用作为耳塞听筒或电唱头的材料,是由于它的压电性能强而制作较简易,ADP则是水声(声呐)的听音器的重要材料。现在应用最广的是压电陶瓷 PZT。研究压电晶片的切型及其振荡模式是40年代以来固体电介质物理的重要课题。压电方面的研究成果在技术上得到广泛的应用,促进了电技术、超声技术、水声技术的发展,在激光技术上也有重要应用。

热电性 压电晶体中有重要的一类,具有自发极化并具有较大的热胀系数,称为热电晶体。这类晶体现已成为探测的重要材料。原来,晶体处于自发极化状态、表面已经有感应电荷,但这些电荷为吸附着的空气离子所抵消。当温度改变,由于较大的热胀系数,引起较大的形变,从而电极化强度发生显著的变化;这时晶体上的面电荷亦发生显著的变化,能够被探测出来。重要的热电晶体都是铁电体如LiNbO3、TGS和BSN、BNN等。PZT也是重要的热电材料。

铁电性 介电晶体有很重要的一类,例如BaTiO3、SrTiO3、LiNbO3等,叫铁电体;在各自一定的特征温度(称为铁电的居里温度)之下,晶体中出现自发极化,并且自发极化可以随外电场反向而反向;在交变电场作用下,显示电滞回线。拿钛酸钡来说,它在120°C以上,没有自发极化,晶体结构属立方晶系。当温度降至120°C以下,晶体出现自发极化,与此同时,结构的对称性降低(如温度在5°C以上,则结构属正方系),出现电滞回线,晶体中形成电畴。自发极化的出现,总伴随着结构的变化,对称性的降低(对称性破缺),是一种相变过程。钛酸钡在120°C以上时,晶体中没有自发极化,是为顺电相。顺电相的钛酸钡具有反演对称中心,不是压电晶体。在120°C以下,铁电相的钛酸钡不具有反演对称中心,成为压电晶体、 电光晶体,也是热电晶体。室温下,TGS、LiNbO3也是铁电体。KDP、ADP在室温附近是压电晶体、电光晶体;但KDP在-150°C以下才是铁电体,ADP在-125°C以下是反铁电体。石英与GaAs和CuCl是压电晶体,但不是铁电体。铁电体必是压电体、热电体,如果对光透明的话,也就是电光晶体。BSN、BNN是铁电电光晶体而GaAs、CuCl则是压电电光晶体;前者的工作电压比后者低得多,在这一点上说,前者比后者优越。

研究铁电体的相变即研究自发极化发生的机理是固态电介质物理也是固体物理的主要课题。现在知道,晶体中自发极化的出现是与点阵振动的某一振动频率〔例如,横光频支(TO)的振动频率〕趋于零值(ωTO→0)有关的。频率趋于零值的振动模式叫做软模。这方面已发展成铁电软模理论。实际上,软模理论对一般固态相变例如合金相变问题也原则上适用。

非线性极化 通常研究电极化问题时,外加电场甚弱、极化强度与外场成正比,这是线性极化。当外场增强,就可能出现非线性极化。但只在非中心对称的压电晶体、铁电晶体中才能观测到二阶的非线性极化,所以,过去已常把压电、铁电材料称为非线性电介质。激光的光电场很强,首先在石英晶体中观察到光倍频现象,其后用KDP、ADP可以很容易实现光倍频和光混频(包括频与和频)以及参量振荡。利用LiNbO3可以使激光的频率连续可调。这些以及其他一些非线性光学效应的出现,引起了广泛的研究,从而发展为非线性光学学科。石英、KDP、ADP、CuCl、GaAs、LiNbO3、BSN、BNN以及PLZT等就成为非常重要的非线性光学介质。电介质物理与非线性光学有着广阔的交叠领域,但两者研究角度是不同的。电介质物理是研究激光作用下电光介质中的非线性电极化过程与介质结构的关系;把宏观的电光(非线性光学)性能与物质的微观组态联系起来,才可能有的放矢地发展制备出性能优异的非线性光学材料。看来,铁电电光材料会比压电电光材料优越,只是目前对于一些问题的规律尚掌握得不够,同时由于技术条件的限制,实际和要求之间还存在很大距(例如,BSN、BNN在性能上远没有达到要求)。

把激光作为工具,研究固态电介质内的电极化过程,这就是固态电介质喇曼光谱的研究。在一定意义上说,这也就是研究点阵振动光频波与激光的相互作用;研究固态电介质中极化元激发(包括极化子,见固体中的元激发)与激光的相互作用。铁电电光的性能比较优越,就是由于晶体中存在自发极化,因此,研究铁电相变前后的(亦即软模的)激光喇曼散射,不仅可以揭示铁电相变过程的规律,而且也可以提供关于铁电电光性能的分析。所以,电介质物理与固态激光光谱学也有着宽广的交叠领域。

驻极体 这是一类具有长期保持电荷能力的电介质材料的总称。驻极体已发现很久,但在长期发展中,它们似乎只有理论上的意义。直到聚合物驻极体被发现后,由于该材料具有优异的储存电荷能力以及薄膜的可任意弯曲性质,驻极体的研究才受到了人们的重视。聚合物驻极体作为一种新的功能材料也得到了广泛的应用。驻极体能产生约30千伏/厘米的强外电场,使它们能够应用于许多目的。现在上已有用薄膜驻极体制成的话筒商品出售。驻极体的电荷存储性能已被应用于静电摄影术。这方面的技术由于光电导成像的研究有了重要突破,导致了静电复印技术的发展。近年来还利用驻极体制成气体过滤器、光显示系统及辐射计量仪等。商业用的气体过滤器用负电晕驻极纤维材料依靠静电吸力来捕捉微小粒子。

固体电介质的击穿 电导率很小的电介不管怎么说,击穿场强与介电常数没什么关系。质用来作为电绝缘材料,称为绝缘体。电介质能够经受而不致损坏的电场(约107~108V/m)称为击穿场强,这是绝缘性能好坏的一个重要标志。当外加电场超过此值时,电介质的电导突然增大甚至引起结构损坏或破碎,称为介电击穿。击穿的过程首先是在外电场不变情况下介质中的电流迅速增大。接着在介质中形成导电的沟道如图2所示。通常在两电极间有一个主沟道和许多分支。沟道中的固体已部分气化形成结构上的损坏。沟道取向与电介质微观结构、杂质、缺陷、外加电极形状等有关。

介电击穿过程很复杂,除与物质本身性质有关外还与样品厚度、电极形状、环境温度、湿度和气压、所加电场波形等有关。实验数据很分散,各种理论模型只能分别在一定范围内说明问题。有三种类型的介电击穿。

② 电击穿。又称本征击穿。电介质中存在的少量传导电子在强外电场加速下得到能量。若电子与点阵碰撞损失的能量小于电子在电场加速过程中所增加的能量,则电子继续被加速而积累起相当大的动能,足以在电介质内部产生碰撞电离,形成电子雪崩现象。结果电导急剧上升,导致击穿。1935年,A.R.希佩尔提出电子碰撞电离概念。后来,H.弗罗利希等人曾对击穿场强作过定量计算。开始击穿时电子所须具有的能量称为击穿判据。

在不完整或掺杂单晶和一些非晶态电介质中,缺陷和杂质形成的浅位阱束缚的电子所需激活能要比禁带宽度小很多。受外电场加速的传导电子更容易使这部分电子被激活参与导电而引起击穿。

此外,在强电场下金属电极中的自由电子也可以注入于电介质而参与导电,称为外部冷发射。

③ 化学击穿。电介质中强电场产生的电流在例如高温等某些条件下可以引起电化学反应。例如离子导电的固体电介质中出现的电解、还原等。结果电介质结构发生了变化,或者是分离出来的物质在两电极间构成导电的通路。或者是介质表面和内部的气泡中放电形成有害物质如臭氧、等,使气泡壁腐蚀造成局部电导增加而出现局部击穿,并逐渐扩展成完全击穿。温度越高,电压作用时间越长,化学形成的击穿也越容易发生。

以上各种击穿类型有时是某一种占主要,有时是几种原因的叠加。在击穿过程中也可出现不同类型的变化。研究电介质击穿有重要的科学意义和实用价值。它涉及材料的物质结构、杂质缺陷、能带结构、强场下的载流子输运过程、弛豫机制以及电子与声子、电子与电子间的相互作用等。在实用上,它关系到高电压输送与变换、高能粒子加速器、强激光与物质相互作用以及强场下半导体、电介质的大容量储能和大功率换能等。

研究电介质宏观介电性质及其微观机制以及电介质的各种特殊效应的物理学分支学科。基本内容包括极化机构、标志介电性质的电容率与介质的微观结构以及与温度和外场频率间的关系、电介质的导热性和导电性、介质损耗、介质击穿机制等。此外,还有许多电介质具有的各种特殊效应。

电介质性质 电介质包括气态、液态和固态等范围广泛的物质。固态电介质包括晶态电介质和非晶态电介质两大类,后者包括玻璃、树脂和高分子聚合物等,是良好的绝缘材料。凡在外电场作用下产生宏观上不等于零的电偶极矩,因而形成宏观束缚电荷的现象称为电极化,能产生电极化现象的物质统称为电介质。电介质的电阻率一般都很高,被称为绝缘体。有些电介质的电阻率并不很高,不能称为绝缘体,但由于能发生极化过程,也归入电介质。通常情形下电介质中的正、负电荷互相抵消,宏观上不表现出电性,但在外电场作用下可产生如下3种类型的变化 :① 原子核外的电子云分布 产生畸变,从而产生不等于零的电偶极矩,称为畸变极化 ;②原来正、负电中心重合的分子,在外电场作用下正、负电中心彼此分离,称为位移极化;③具有固有电偶极矩的分子原来的取向是混乱的,宏观上电偶极矩总和等于零,在外电场作用下,各个电偶极子趋向于一致的排列,从而宏观电偶极矩不等于零,称为转向极化。电介质极化时,电极化强度矢量P与总电场强度E的关系为P=ε0χeE,ε0为真空电容率,χe为电极化率,εr=1+χe称为相对电容率(见电极化强度 ,电极化率)。电极化率或电容率与外电场的频率有关。对静电场或极低频电场,上述3种极化类型都参与极化过程 ,一定电介质的电容率为常量。电场频率增加时,转向极化逐渐跟不上外电场的变化,电容率变为复数,虚部的出现标志着电场能量的损耗,称为介电损耗。频率进一步增加时,转向极化失去作用,电容率减小。在线波段,电介质正、负电中心的固有振动频率往往与外场频率一致,从而产生共振,表现为电介质对线的强烈吸收。在吸收区,电容率的实部和虚部均随频率发生大起大落的变化。在可见光波段,位移极化也失去作用,只有畸变极化起作用。光频区域的电容率实部进一步减小,它对应电介质的折射率,虚部决定了对光波的吸收。在强电场(如激光)作用下,极化强度 P 与电场强度E不再有线性关系 ,这使电介质表现出种种非线性效应(见非线性光学)。各向异性晶体的电容率不能简单地用一个数来表示,需用张量表示。

③驻极体。除去外电场或外加机械作用后,仍能长时间保持极化状态的电介质称为驻极体。驻极体同时具有压电效应和热电效应。技术上大多采用极性高分子聚合物作为驻极体材料。驻极体能产生30千伏/厘米的强电场。驻极体能存储电荷的性能已被用于静电摄影术和吸附气体中微小颗粒的气体过滤器。

④热电效应。具有自发极化造成的宏观电偶极矩,并具有较大热胀系数的晶体称为热电晶体。处于自发极化状态的热电晶体,在电偶极矩正、负两端表面上本来存在着由极化形成的束缚电荷,但由于吸附了空气中的异号离子而不表现出带电性质。当温度改变时,热电晶体的体积发生显著变化,从而导致极化强度的明显改变,破坏了表面的电中性,表面所吸附的多余电荷将被释放出来,此现象称为热电效应。经人工极化的铁电体和驻极体都具有热电效应。热电效应已用于线探测和热成像技术。

⑤电热效应。热电效应的逆效应,具有电热效应的电介质(多为驻极体)称为电热体。在绝热条件下借助于外电场改变电热体的极化强度时,它的温度会发生变化,此称为电热效应。绝热去极化可降低温度,与绝热去磁法(见磁热效应)一样可用来获得超低温。常用的电热材料有钛酸锶陶瓷和聚(PVF)等驻极体。

⑥电光效应。某些各向同性的透明电介质在电场作用下变成光学各向异性的效应。

版权声明:本文仅代表作者观点,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 c19126499204@163.com,本站将立刻删除

下一篇 :